蜂鸟网 > 资料库 > 正文
电脑的CPU是怎样制造的
发布于:2015-12-22转载自互联网
回答
作为计算机的核心组件,CPU(Central Processor Unit,中央处理器)在用户的心中一直是十分神秘的:在多数用户的心目中,它都只是一个名词缩写,他们甚至连它的全写都拚不出来;在一些硬件高手的眼里,CPU也至多是一块十余平方厘米,有很多脚的块块儿,而CPU的核心部分甚至只有不到一平方厘米大。他们知道这块不到一平方厘米大的玩意儿是用多少微米工艺制成的,知道它集成了几亿几千万晶体管,但鲜有了解CPU的制造流程者。今天,就让我们来详细的了解一下,CPU是怎样练成的。 基本材料 多数人都知道,现代的CPU是使用硅材料制成的。硅是一种非金属元素,从化学的角度来看,由于它处于元素周期表中金属元素区与非金属元素区的交界处,所以具有半导体的性质,适合于制造各种微小的晶体管,是目前最适宜于制造现代大规模集成电路的材料之一。从某种意义上说,沙滩上的沙子的主要成分也是硅(二氧化硅),而生产CPU所使用的硅材料,实际上就是从沙子里面提取出来的。当然,CPU的制造过程中还要使用到一些其它的材料,这也就是为什么我们不会看到Intel或者AMD只是把成吨的沙子拉往他们的制造厂。同时,制造CPU对硅材料的纯度要求极高,虽然来源于廉价的沙子,但是由于材料提纯工艺的复杂,我们还是无法将一百克高纯硅和一吨沙子的价格相提并论。 制造CPU的另一种基本材料是金属。金属被用于制造CPU内部连接各个元件的电路。铝是常用的金属材料之一,因为它廉价,而且性能不差。而现今主流的CPU大都使用了铜来代替铝,因为铝的电迁移性太大,已经无法满足当前飞速发展的CPU制造工艺的需要。所谓电迁移,是指金属的个别原子在特定条件下(例如高电压)从原有的地方迁出。 很显然,如果不断有原子从连接元件的金属微电路上迁出,电路很快就会变得千疮百孔,直到断路。这也就是为什么超频者尝试对Northwood Pentium 4的电压进行大幅度提升时,这块悲命的CPU经常在“突发性Northwood死亡综合症(Sudden Northwood Death Syndrome,SNDS)”中休克甚至牺牲的原因。SNDS使得Intel第一次将铜互连(Copper Interconnect)技术应用到CPU的生产工艺中。铜互连技术能够明显的减少电迁移现象,同时还能比铝工艺制造的电路更小,这也是在纳米级制造工艺中不可忽视的一个问题。 不仅仅如此,铜比铝的电阻还要小得多。种种优势让铜互连工艺迅速取代了铝的位置,成为CPU制造的主流之选。除了硅和一定的金属材料之外,还有很多复杂的化学材料也参加了CPU的制造工作。 准备工作 解决制造CPU的材料的问题之后,我们开始进入准备工作。在准备工作的过程中,一些原料将要被加工,以便使其电气性能达到制造CPU的要求。其一就是硅。首先,它将被通过化学的方法提纯,纯到几乎没有任何杂质。同时它还得被转化成硅晶体,从本质上和海滩上的沙子划清界限。 在这个过程中,原材料硅将被熔化,并放进一个巨大的石英熔炉。这时向熔炉里放入一颗晶种,以便硅晶体围着这颗晶种生长,直到形成一个几近完美的单晶硅。如果你在高中时把硫酸铜结晶实验做的很好,或者看到过单晶冰糖是怎么制造的,相信这个过程不难理解。同时你需要理解的是,很多固体物质都具有晶体结构,例如食盐。CPU制造过程中的硅也是这样。小心而缓慢的搅拌硅的熔浆,硅晶体包围着晶种向同一个方向生长。最终,一块硅锭产生了。 现在的硅锭的直径大都是200毫米,而CPU厂商正在准备制造300毫米直径的硅锭。在确保质量不变的前提下制造更大的硅锭难度显然更大,但CPU厂商的投资解决了这个技术难题。建造一个生产300毫米直径硅锭的制造厂大约需要35亿美元,Intel将用其产出的硅材料制造更加复杂的CPU。而建造一个相似的生产200毫米直径硅锭的制造厂只要15亿美元。作为第一个吃螃蟹的人,Intel显然需要付出更大的代价。花两倍多的钱建造这样一个制造厂似乎很划不来,但从下文可以看出,这个投资是值得的。硅锭的制造方法还有很多,上面介绍的只是其中一种,叫做CZ制造法。 硅锭造出来了,并被整型成一个完美的圆柱体,接下来将被切割成片状,称为晶圆。晶圆才被真正用于CPU的制造。一般来说,晶圆切得越薄,相同量的硅材料能够制造的CPU成品就越多。接下来晶圆将被磨光,并被检查是否有变形或者其它问题。在这里,质量检查直接决定着CPU的最终良品率,是极为重要的。 没有问题的晶圆将被掺入适当的其它材料,用以在上面制造出各种晶体管。掺入的材料沉积在硅原子之间的缝隙中。目前普遍使用的晶体管制造技术叫做CMOS(Complementary Metal Oxide Semiconductors,互补式金属氧化物半导体)技术,相信这个词你经常见到。简单的解释一下,CMOS中的C(Complementary)是指两种不同的MOS电路“N”电路和“P”电路之间的关系:它们是互补的。   在电子学中,“N”和“P”分别是Negative和Positive的缩写,用于表示极性。可以简单的这么理解,在“N”型的基片上可以安装“P”井制造“P”型的晶体管,而在“P”型基片上则可以安装“N”井制造“N”型晶体管。在多数情况下,制造厂向晶圆里掺入相关材料以制造“P”基片,因为在“P”基片上能够制造出具有更优良的性能,并且能有效的节省空间的“N”型晶体管;而这个过程中,制造厂会尽量避免产生“P”型晶体管。   接下来这块晶圆将被送入一个高温熔炉,当然这次我们不能再让它熔化了。通过密切监控熔炉内的温度、压力和加热时间,晶圆的表面将被氧化成一层特定厚度的二氧化硅(SiO2),作为晶体管门电路的一部分―基片。如果你学过逻辑电路之类的,你一定会很清楚门电路这个概念。通过门电路,输入一定的电平将得到一定的输出电平,输出电平根据门电路的不同而有所差异。电平的高低被形象的用0和1表示,这也就是计算机使用二进制的原因。在Intel使用90纳米工艺制造的CPU中,这层门电路只有5个原子那么厚。   准备工作的最后一步是在晶圆上涂上一层光敏抗蚀膜,它具有光敏性,并且感光的部分能够被特定的化学物质清洗掉,以此与没有曝光的部分分离。 完成门电路   这是CPU制造过程中最复杂的一个环节,这次使用到的是光微刻技术。可以这么说,光微刻技术把对光的应用推向了极限。CPU制造商将会把晶圆上覆盖的光敏抗蚀膜的特定区域曝光,并改变它们的化学性质。而为了避免让不需要被曝光的区域也受到光的干扰,必须制作遮罩来遮蔽这些区域。想必你已经在Photoshop之类的软件里面认识到了遮罩这个概念,在这里也大同小异。   在这里,即使使用波长很短的紫外光并使用很大的镜头,也就是说,进行最好的聚焦,遮罩的边缘依然会受到影响,可以简单的想象成边缘变模糊了。请注意我们现在讨论的尺度,每一个遮罩都复杂到不可想象,如果要描述它,至少得用10GB的数据,而制造一块CPU,至少要用到20个这样的遮罩。对于任意一个遮罩,请尝试想象一下北京市的地图,包括它的郊区;然后将它缩小到一块一平方厘米的小纸片上。最后,别忘了把每块地图都连接起来,当然,我说的不是用一条线连连那么简单。   当遮罩制作完成后,它们将被覆盖在晶圆上,短波长的光将透过这些石英遮罩的孔照在光敏抗蚀膜上,使之曝光。接下来停止光照并移除遮罩,使用特定的化学溶液清洗掉被曝光的光敏抗蚀膜,以及在下面紧贴着抗蚀膜的一层硅。   当剩余的光敏抗蚀膜也被去除之后,晶圆上留下了起伏不平的二氧化硅山脉,当然你不可能看见它们。接下来添加另一层二氧化硅,并加上了一层多晶硅,然后再覆盖一层光敏抗蚀膜。多晶硅是上面提到的门电路的另一部分,而以前这是用金属制造而成的(即CMOS里的M:Metal)。光敏抗蚀膜再次被盖上决定这些多晶硅去留的遮罩,接受光的洗礼。然后,曝光的硅将被原子轰击,以制造出N井或P井,结合上面制造的基片,门电路就完成了。 重复   可能你会以为经过上面复杂的步骤,一块CPU就已经差不多制造完成了。实际上,到这个时候,CPU的完成度还不到五分之一。接下来的步骤与上面所说的一样复杂,那就是再次添加二氧化硅层,再次蚀刻,再次添加……重复多遍,形成一个3D的结构,这才是最终的CPU的核心。每几层中间都要填上金属作为导体。Intel的Pentium 4处理器有7层,而AMD的Athlon 64则达到了9层。层数决定于设计时CPU的布局,以及通过的电流大小。 在经过几个星期的从最初的晶圆到一层层硅、金属和其它材料的CPU核心的制造过程之后,该是看看制造出来的这个怪物的时候了。这一步将测试晶圆的电气性能,以检查是否出了什么差错,以及这些差错出现在哪个步骤(如果可能的话)。接下来,晶圆上的每个CPU核心都将被分开(不是切开)测试。 通过测试的晶圆将被切分成若干单独的CPU核心,上面的测试里找到的无效的核心将被放在一边。接下来核心将被封装,安装在基板上。然后,多数主流的CPU将在核心上安装一块集成散热反变形片(Integrated Heat Spreader,IHS)。每块CPU将被进行完全测试,以检验其全部功能。某些CPU能够在较高的频率下运行,所以被标上了较高的频率;而有些CPU因为种种原因运行频率较低,所以被标上了较低的频率。最后,个别CPU可能存在某些功能上的缺陷,如果问题出在缓存上(缓存占CPU核心面积的一半以上),制造商仍然可以屏蔽掉它的部分缓存,这意味着这块CPU依然能够出售,只是它可能是Celeron,可能是Sempron,或者是其它的了。   当CPU被放进包装盒之前,一般还要进行最后一次测试,以确保之前的工作准确无误。根据前面确定的最高运行频率不同,它们被放进不同的包装,销往世界各地。   读完这些,相信你已经对CPU的制造流程有了一些比较深入的认识。CPU的制造,可以说是集多方面尖端科学技术之大成,CPU本身也就那么点大,如果把里面的材料分开拿出来卖,恐怕卖不了几个钱。然而CPU的制造成本是非常惊人的,从这里或许我们可以理解,为什么这东西卖这么贵了。
+1
97

相关推荐

热文推荐

热帖推荐